

CISC 332 Project - Final Report

Database Design and Implementation, SQL Queries,
Assumptions, User Guide, Discussion

Submitted by:

Emily Bao 10103388

Yuhan Wang 10195692

Chantal Montgomery 10191890

CONTENTS

Assumptions ………………………………….……………………………..... 2

ER Diagram …………………………………………………………………..… 3

Relational Schema ….……………………………………………………….... 4

SQL from Application ……...………………………..……………………… 13

Discussion ………………………………………………………….………… 26

User Guide …………………………………………………………….……… 31

1

Assumptions

1. A theatre cannot exist without a complex
2. A complex cannot exist without a theatre
3. A movie supplier can exist without having a movie at any theatre
4. Every movie needs to have a supplier
5. Movies cannot have the same name, they must all be unique
6. Showings do not get deleted from the database even if they have passed, therefore

each movie has at least one showing
7. No actors have the same first and last name, they must all be unique combinations of

first and last name
8. All actors in the database act in at least one movie
9. Admins have been given their email and password information and they are not

allowed to create new admin accounts

2

ER Diagram:

3

CREATE TABLE Theatre(
 complex_name VARCHAR(50) NOT NULL,
 street VARCHAR(100),
 city VARCHAR(100),
 pc CHAR(6),
 phone_num CHAR(10),
 theatre_num INTEGER NOT NULL,
 max_seats INTEGER NOT NULL,
 screen_size CHAR(1) NOT NULL,
 PRIMARY KEY(complex_name, theatre_num)
);
CREATE TABLE Customer(
 account_number CHAR(16) NOT NULL,
 password VARCHAR(30) NOT NULL,
 first_name VARCHAR(20) NOT NULL,
 last_name VARCHAR(20) NOT NULL,
 street VARCHAR(100),
 city VARCHAR(100),
 pc CHAR(6),
 phone_number CHAR(10),
 email VARCHAR(30) NOT NULL,
 credit_card VARCHAR(64) NOT NULL,
 card_expiry TIMESTAMP NOT NULL,
 PRIMARY KEY(account_number),
 UNIQUE(email)
);
CREATE TABLE Movie(
 title VARCHAR(100) NOT NULL,
 run_time INTEGER NOT NULL,
 pg_rating VARCHAR(4),
 plot_synopsis VARCHAR(1000),
 production_company VARCHAR(100),
 supplier VARCHAR(200) NOT NULL,
 start_date DATE NOT NULL,
 end_date DATE NOT NULL,
 director_fname VARCHAR(20) NOT NULL,
 director_lname VARCHAR(20) NOT NULL,
 Cover_img VARCHAR(1000),
 FOREIGN KEY(supplier) REFERENCES Movie_Supplier(company_name),
 PRIMARY KEY(title)
);
CREATE TABLE Movie_Supplier(
 company_name VARCHAR(100) NOT NULL,
 street VARCHAR(100) NOT NULL,
 city VARCHAR(100) NOT NULL,
 pc CHAR(6) NOT NULL,

4

 phone_num CHAR(10) NOT NULL,
 contact_fname VARCHAR(20),
 contact_lname VARCHAR(20),
 PRIMARY KEY(company_name)
);
CREATE TABLE Main_Actor(
 first_name VARCHAR(20) NOT NULL,
 last_name VARCHAR(20) NOT NULL,
 PRIMARY KEY(first_name, last_name)
);
CREATE TABLE Acts_In(
 actor_fname VARCHAR(20) NOT NULL,
 actor_lname VARCHAR(20) NOT NULL,
 movie_title VARCHAR(100) NOT NULL,
 FOREIGN KEY(actor_fname, actor_lname) REFERENCES Main_Actor(first_name,
last_name),
 FOREIGN KEY(movie_title) REFERENCES Movie(title),
 PRIMARY KEY(
 actor_fname,
 actor_lname,
 movie_title
)
);
CREATE TABLE Showing(
 movie_title VARCHAR(100) NOT NULL,
 start_time DATETIME NOT NULL,
 end_time DATETIME NOT NULL,
 theatre_num INTEGER NOT NULL,
 num_seats INTEGER NOT NULL,
 complex_name VARCHAR(50) NOT NULL,
 FOREIGN KEY(movie_title) REFERENCES Movie(title),
 FOREIGN KEY(complex_name, theatre_num) REFERENCES Theatre(complex_name,
theatre_num),
 PRIMARY KEY(
 start_time,
 theatre_num,
 complex_name
)
);

CREATE TABLE Rates(
 customer_account CHAR(16) NOT NULL,
 movie_title VARCHAR(100) NOT NULL,
 star_rating TINYINT NOT NULL,
 review VARCHAR(1000),
 FOREIGN KEY(customer_account) REFERENCES Customer(account_number),

5

 FOREIGN KEY(movie_title) REFERENCES Movie(title),
 PRIMARY KEY(customer_account, movie_title)
);

create table Going_To(
customer_account char(16) not null,
movie_title varchar(100) not null,
start_time datetime not null,
theatre_num integer not null,
complex_name varchar(50) not null,
tickets_reserved integer not null,
foreign key(movie_title) references Movie(title),
foreign key(customer_account) references Customer(account_number),
foreign key(start_time, theatre_num, complex_name) references Showing(start_time,
theatre_num, complex_name),
primary key(customer_account, start_time, theatre_num)
);

CREATE TABLE Admin(
email varchar(30) NOT NULL PRIMARY KEY,
password varchar(30) NOT NULL,
unique(email)
);

INSERT INTO Admin
VALUES('admin001@test.com', 'cisc332'),('admin002@test.com', 'cisc332');

INSERT into Theatre values
('Cineplex','55 Bloor St','Toronto','M4W1A5','4169616304',1,280,'l'),
('Cineplex','55 Bloor St','Toronto','M4W1A5','4169616304',2,300,'l'),
('Cineplex','55 Bloor St','Toronto','M4W1A5','4169616304',3,160,'m'),
('Cineplex','55 Bloor St','Toronto','M4W1A5','4169616304',4,140,'m'),
('Cineplex','55 Bloor St','Toronto','M4W1A5','4169616304',5,50,'s'),
('The Royal','608 College St','Toronto','M6G1B4','4164664400',1,300,'l'),
('The Royal','608 College St','Toronto','M6G1B4','4164664400',2,150,'m'),
('The Royal','608 College St','Toronto','M6G1B4','4164664400',3,170,'m'),
('Alliance','1651 Queen St','Toronto','M4L1G5','4166991327',1, 270,'l'),
('Alliance','1651 Queen St','Toronto','M4L1G5','4166991327',2,170,'m'),
('Alliance','1651 Queen St','Toronto','M4L1G5','4166991327',3,150,'m'),
('Alliance','1651 Queen St','Toronto','M4L1G5','4166991327',4,150,'m');

6

INSERT into Customer values
('3369814532808088','dnanfkvn','Robin','Goodwin','99 Colborne Street',
'Kingston','K1L2W1','3568656000','rgoodwin@live.com','3116713299240001','2019-02-01'),
('3869839532808088','dalfvmiaeo','Amy','Hamilton','100 Colborne Street',
'Kingston','K1L2W2','3269000777','ahamilton@live.com','3716711119246871','2021-08-01'),
('3612814532808088','dmsaldaf','Paul','Rondo','101 Colborne Street',
'Kingston','K1L3W1','3069656777','prondo@live.com','3563513299246871','2022-01-05'),
('3941814532808088','dnalvvads','Tony','Ken','28 First Ave',
'Kingston','K1L2W1','3769656888','tken@live.com','3870713299246871','2025-01-08'),
('3201814532808021','fdnsalkvm','Kim','Ayeno','56 Duncan Street',
'Kingston','K1M2W1','3569656651','kayeno@live.com','3210386299246871','2021-09-08'),

('4369814532808088','nvalmvd','Jeremy','Gordon','99 Quebec Street',
'Kingston','K3K2W1','4169656000','jgordon@live.com','4716713299240001','2019-11-01'),
('4869839532808088','dasfnlnda','James','Curry','100 Quebec Street',
'Kingston','K3K2W2','4169000777','jcurry@live.com','4716711119246871','2020-06-01'),
('4612814532808088','nvalmvd','Lebron','Kenedy','101 Quebec Street',
'Kingston','K3K3W1','4169656777','lkenedy@live.com','4023513299246871','2022-01-01'),
('4941814532808088','dnofajda','Chris','Nash','36 First Ave',
'Kingston','K2K2W1','4169656888','cnash@live.com','4010713299246871','2025-01-01'),
('4201814532808021','adffaadada','Jason','Smith','12 Codd Street',
'Kingston','K5L2W1','4169656651','jsmith@live.com','4010386299246871','2021-09-01'),

('6046462851066361','as33dasd','Melinda','Gill','222 Stuart Street',

'Kingston','K7L2W1','4169656777','mthurn@live.com','4716713299246871','2018-12-01'),
('9982907981088662','muEW8YEk','Juana','Bowman','3978 Gorham
Street','London','N0N0N0','6135550157','rgarcia@optonline.net','4253402729496939','2020-
03-01'),
('5723962851066688','jguje6Jy','Bill','Henry','500 Kingston
Rd','Toronto','M4L1V3','6134550001','webdragon@comcast.net','4532817688666953','2022-
05-01'),
('7865462856766321','5NZkJLkj','Dolores', 'Wood','315 St Germain
Ave','Toronto','M4E3K7','6479368855','crandall@sbcglobal.net','4539287669568813','2022-0
8-01'),
('8874672851857461','F39DmRgh','Carl','Riley','26 Goodwood Park Cres East
York','Toronto','M4C2G5','9058789933','fangorn@hotmail.com','4539410702754915','2019-0
8-01'),
('8674462864456324','gEKNXSRx','Guadalupe','Houston','48 St Clair Ave
W','Toronto','M4V2Z2','6136665633','mxiao@yahoo.com','5536652401578877','2020-12-01')
,
('8563462851068567','f9srHP5d','Ian','Pratt','42 Balsam
Ave','Toronto','M4E3B4','6478290964','jguyer@aol.com','5229766204193627','2021-01-01'),
('7755462662366001','pjv9y2ey','Javier','Hubbard','101 Hillingdon
Ave','Toronto','M4C3H9','4168988888','drezet@me.com','5353895832119767','2019-11-01'),

7

('8587462776065566','SysFfWRq','Ester','Bridges','304 Berkeley
St','Toronto','M5A2X5','9056678443','euice@outlook.com','5299770036729702','2023-03-01'
),
('6556462822226333','GPDzmK9u','Jeffrey','Greene','300 Silver Birch
Ave','Toronto','M4E3L5','6137777707','firstpr@att.net','5194659098906983','2021-01-01'),
('0000111122223333','test123','Emily','Bao','5735 Tayside
Cresent','Mississauga','L5M5J4','6477795377','emily@test.com','1234567829496939','2020-
03-01'),
('0000111122220000','test123','Chantal','Montgomery','5711 Tayside
Cresent','Mississauga','L5M5J4','6477799999','chantal@test.com','1234567829496939','202
0-03-01'),
('0000111122221111','test123','Yuhan','Wang','5712 Tayside
Cresent','Mississauga','L5M5J4','6477791111','yuhan@test.com','1234567829487939','2020-
04-01'),
('0000111122223331','test123','Melinda','Gill','5713 Tayside
Cresent','Toronto','L5M5J4','6473391111','melinda@gmail.com','1234567829496939','2020-
07-01'),
('0000443122221111','test123','Melinda','Gill','5712 Windsor
Cresent','Mississauga','L5M5J4','6477791111','m.gill@hotmailt.com','1234567339496939','2
020-12-01');

INSERT into Movie values
('Beauty and the Beast', 129, 'PG', 'An adaptation of the fairy tale about a monstrous-looking
prince and a young woman who fall in love.', 'Walt Disney Studios', 'Elevation Pictures',
'2017-10-02', '2017-12-03', 'Bill', 'Condon',
'https://upload.wikimedia.org/wikipedia/en/d/d6/Beauty_and_the_Beast_2017_poster.jpg'),
('Black Panther', 134, 'PG13', 'T''Challa, the King of Wakanda, rises to the throne in the
isolated, technologically advanced African nation, but his claim is challenged by a vengeful
outsider who was a childhood victim of T''Challa''s father''s mistake.', 'Marvel Studios',
'Elevation Pictures', '2018-02-03', '2018-04-01', 'Ryan', 'Coogler',
'https://13thdimension.com/wp-content/uploads/2018/02/Black-Panther-poster-main-xl-580x8
59.jpg'),
('Jumanji: Welcome to the Jungle', 119, 'PG13', 'Four teenagers are sucked into a magical
video game, and the only way they can escape is to work together to finish the game.',
'Columbia Pictures', 'Brightlight Pictures', '2018-02-22', '2018-04-05', 'Jake', 'Kasdan',
'https://assets.voxcinemas.com/posters/P_HO00004797.jpg'),
('Maze Runner: The Death Cure', 141, 'PG13', 'Young hero Thomas embarks on a mission to
find a cure for a deadly disease known as the Flare.', 'Gotham Group', 'Entertainment One',
'2018-03-01', '2018-04-28', 'Wes', 'Ball',
'https://assets.voxcinemas.com/posters/P_HO00005023.jpg') ,
('Winchester', 99, 'PG13', 'Ensconced in her sprawling California mansion, eccentric firearm
heiress Sarah Winchester believes she is haunted by the souls of people killed by the
Winchester repeating rifle.', 'Bullit Entertainment', 'Entertainment One', '2018-03-07',
'2018-04-01', 'Michael', 'Spierig',
'http://www.espaciomediterraneo.com/uploads/cine/8934_winchester-395060487-large.jpg'),

8

('A Wrinkle in Time', 109, 'PG', 'After the disappearance of her scientist father, three peculiar
beings sen Meg, her brother, and her friend to space in order to find him.', 'Walt Disney
Studios', 'Entertainment One', '2018-03-16','2018-06-01', 'Ava', 'DuVernay',
'https://www.cinelandia.com.co/archivos/proximo/Afiche_Nuevos_viaje.jpg');

INSERT into Acts_In values
('Emma', 'Watson', 'Beauty and the Beast'), ('Dan', 'Stevens', 'Beauty and the Beast'),
('Chadwick', 'Boseman', 'Black Panther'), ('Lupita', 'Nyong''o', 'Black Panther'),
('Dwayne', 'Johnson', 'Jumanji: Welcome to the Jungle'),
('Kevin', 'Hart', 'Jumanji: Welcome to the Jungle'),
('Jack', 'Black', 'Jumanji: Welcome to the Jungle'),
('Dylan', 'O''Brien', 'Maze Runner: The Death Cure'),
('Ki Hong', 'Lee', 'Maze Runner: The Death Cure'),
('Kaya', 'Scodelario', 'Maze Runner: The Death Cure'),
('Helen', 'Mirren', 'Winchester'),
('Storm', 'Reid', 'A Wrinkle in Time'),
('Oprah', 'Winfrey', 'A Wrinkle in Time'),
('Reese', 'Witherspoon', 'A Wrinkle in Time'),
('Mindy', 'Kaling', 'A Wrinkle in Time');

INSERT into Movie_Supplier values
('Elevation Pictures', '166 Pearl St West Suite 300', 'Toronto', 'L2M5J8', '4167789876',
'Catherine', 'Simmonds'),
('Brightlight Pictures', '543 River Street', 'Vancouver', 'E9R3K1', '7053332647', 'Shawn',
'Westman'),
('Entertainment One', '499 Dundas Street West', 'Toronto', 'L2J3H8','4167681004', 'Dan',
'Johnson'),
('Warner Bros.', '4000 Warner Blvd', 'Vancouver', 'V7G5X2', '7053245432', 'Scott', 'Martin');

INSERT into Main_Actor values
('Emma', 'Watson'),
('Dan', 'Stevens'),
('Chadwick', 'Boseman'),
('Lupita', 'Nyong''o'),
('Dwayne', 'Johnson'),
('Kevin', 'Hart'),
('Jack', 'Black'),
('Dylan', 'O''Brien'),
('Ki Hong', 'Lee'),
('Kaya', 'Scodelario'),
('Helen', 'Mirren'),
('Storm', 'Reid'),
('Oprah', 'Winfrey'),
('Reese', 'Witherspoon'),
('Mindy', 'Kaling');

9

INSERT into Showing values
('Maze Runner: The Death Cure', '2018-03-06 19:30:00', '2018-03-06 21:51:00', 1, 275,
'Cineplex'),
('Maze Runner: The Death Cure', '2018-03-06 13:00:00', '2018-03-06 15:21:00', 1, 279,
'Cineplex'),
('Maze Runner: The Death Cure', '2018-03-20 19:30:00', '2018-03-20 21:51:00', 1, 277, 'The
Royal'),
('Maze Runner: The Death Cure', '2018-03-15 20:00:00', '2018-03-15 22:21:00', 3, 149,
'Alliance'),
('Jumanji: Welcome to the Jungle', '2018-04-01 20:00:00', '2018-04-01 21:59:00', 3, 148,
'Alliance'),
('Jumanji: Welcome to the Jungle', '2018-03-23 18:30:00', '2018-03-23 20:29:00', 2, 147,
'The Royal'),
('Jumanji: Welcome to the Jungle', '2018-03-25 20:00:00', '2018-03-25 21:59:00', 1, 280,
'Cineplex'),
('Beauty and the Beast', '2017-10-22 19:00:00', '2017-10-22 21:09:00', 1, 275, 'Cineplex'),
('Winchester', '2018-03-12 22:00:00', '2018-12-22 23:39:00', 4, 150, 'Alliance'),
('A Wrinkle in Time', '2018-04-10 14:00:00', '2018-04-10 15:49:00', 1, 300, 'The Royal'),
('Winchester', '2018-03-30 22:00:00', '2018-12-22 23:39:00', 4, 150, 'Alliance'),
('Winchester', '2018-03-30 20:00:00', '2018-12-22 21:39:00', 1, 280, 'Cineplex'),
('A Wrinkle in Time', '2018-04-05 22:00:00', '2018-12-22 23:49:00', 3, 160, 'Cineplex'),
('A Wrinkle in Time', '2018-04-05 22:00:00', '2018-12-22 23:39:00', 2, 300, 'Alliance'),
('Black Panther', '2018-03-24 19:00:00', '2018-03-10 21:14:00', 4, 150, 'Alliance'),
('Black Panther', '2018-03-26 19:00:00', '2018-03-10 21:14:00', 3, 80, 'Cineplex'),
('Black Panther', '2018-03-29 17:00:00', '2018-03-10 19:14:00', 1, 50, 'Alliance'),
('Winchester', '2018-04-20 16:00:00', '2018-12-22 17:39:00', 3, 144, 'Cineplex'),
('Winchester', '2018-04-20 20:00:00', '2018-12-22 21:39:00', 2, 300, 'Cineplex'),
('A Wrinkle in Time', '2018-04-05 22:00:00', '2018-12-22 23:49:00', 4, 150, 'Alliance'),
('A Wrinkle in Time', '2018-04-05 22:00:00', '2018-12-22 23:39:00', 1, 218, 'Cineplex');

INSERT into Going_To values
('0000111122220000','A Wrinkle in Time','2018-04-05 22:00:00',1,'Cineplex',5),
('6046462851066361','A Wrinkle in Time','2018-04-05 22:00:00',1,'Cineplex',8),
('9982907981088662','A Wrinkle in Time','2018-04-05 22:00:00',1,'Cineplex',3),
('5723962851066688','A Wrinkle in Time','2018-04-05 22:00:00',1,'Cineplex',1),
('7865462856766321','A Wrinkle in Time','2018-04-05 22:00:00',1,'Cineplex',2),
('8874672851857461','A Wrinkle in Time','2018-04-05 22:00:00',1,'Cineplex',4),
('8563462851068567','A Wrinkle in Time','2018-04-05 22:00:00',1,'Cineplex',3),
('8674462864456324','A Wrinkle in Time','2018-04-05 22:00:00',1,'Cineplex',2),
('3369814532808088','A Wrinkle in Time','2018-04-05 22:00:00',1,'Cineplex',3),
('3869839532808088','A Wrinkle in Time','2018-04-05 22:00:00',1,'Cineplex',1),
('3612814532808088','A Wrinkle in Time','2018-04-05 22:00:00',1,'Cineplex',5),
('3941814532808088','A Wrinkle in Time','2018-04-05 22:00:00',1,'Cineplex',3),
('3201814532808021','A Wrinkle in Time','2018-04-05 22:00:00',1,'Cineplex',2),
('4369814532808088','A Wrinkle in Time','2018-04-05 22:00:00',1,'Cineplex',6),
('4869839532808088','A Wrinkle in Time','2018-04-05 22:00:00',1,'Cineplex',1),

10

('4612814532808088','A Wrinkle in Time','2018-04-05 22:00:00',1,'Cineplex',5),
('4941814532808088','A Wrinkle in Time','2018-04-05 22:00:00',1,'Cineplex',2),
('4201814532808021','A Wrinkle in Time','2018-04-05 22:00:00',1,'Cineplex',3),
('0000111122220000','Maze Runner: The Death Cure','2018-03-06 19:30:00',1,'Cineplex',3),
('6046462851066361','Maze Runner: The Death Cure','2018-03-06 19:30:00',1,'Cineplex',2),
('9982907981088662','Maze Runner: The Death Cure','2018-03-06 13:00:00',1,'Cineplex',1),
('5723962851066688','Maze Runner: The Death Cure','2018-03-15 20:00:00',3,'Alliance',1),
('7865462856766321','Maze Runner: The Death Cure','2018-03-20 19:30:00',1,'The
Royal',2),
('8874672851857461','Jumanji: Welcome to the Jungle','2018-04-01 20:00:00',3,'Alliance',1),
('8674462864456324','Jumanji: Welcome to the Jungle','2018-04-01 20:00:00',3,'Alliance',1),
('8563462851068567','Jumanji: Welcome to the Jungle','2018-03-23 18:30:00',2,'The
Royal',1),
('0000111122220000','Jumanji: Welcome to the Jungle','2018-03-23 18:30:00',2,'The
Royal',2),
('3369814532808088','Maze Runner: The Death Cure','2018-03-20 19:30:00',1,'The
Royal',3),
('3869839532808088','Maze Runner: The Death Cure','2018-03-20 19:30:00',1,'The
Royal',5),
('3612814532808088','Maze Runner: The Death Cure','2018-03-20 19:30:00',1,'The
Royal',1),
('3941814532808088','Maze Runner: The Death Cure','2018-03-20 19:30:00',1,'The
Royal',2),
('3201814532808021','Maze Runner: The Death Cure','2018-03-20 19:30:00',1,'The
Royal',10),
('4369814532808088','Winchester','2018-04-20 16:00:00',3,'Cineplex',6),
('4869839532808088','Winchester','2018-04-20 16:00:00',3,'Cineplex',2),
('4612814532808088','Winchester','2018-04-20 16:00:00',3,'Cineplex',4),
('4941814532808088','Winchester','2018-04-20 16:00:00',3,'Cineplex',3),
('4201814532808021','Winchester','2018-04-20 16:00:00',3,'Cineplex',1),
('4369814532808088','Black Panther','2018-03-26 19:00:00',3,'Cineplex',3),
('4869839532808088','Black Panther','2018-03-26 19:00:00',3,'Cineplex',7),
('4612814532808088','Black Panther','2018-03-26 19:00:00',3,'Cineplex',2),
('4941814532808088','Black Panther','2018-03-26 19:00:00',3,'Cineplex',5),
('4201814532808021','Black Panther','2018-03-26 19:00:00',3,'Cineplex',3),
('7755462662366001','Beauty and the Beast','2017-10-22 19:00:00',1,'Cineplex',1),
('8587462776065566','Beauty and the Beast','2017-10-22 19:00:00',1,'Cineplex',3),
('6556462822226333','Beauty and the Beast','2017-10-22 19:00:00',1,'Cineplex',1),
('6046462851066361','Jumanji: Welcome to the Jungle','2018-04-01 20:00:00',3,'Alliance',1),
('0000111122223331','Jumanji: Welcome to the Jungle','2018-03-23 18:30:00',2,'The
Royal',1),
('0000111122223331','A Wrinkle in Time','2018-04-05 22:00:00',1,'Cineplex',3),
('6046462851066361','Winchester','2018-04-20 16:00:00',3,'Cineplex',2),
('0000443122221111','Winchester','2018-04-20 16:00:00',3,'Cineplex',4),
('0000443122221111','A Wrinkle in Time','2018-04-05 22:00:00',1,'Cineplex',2);

11

INSERT into Rates values
('6046462851066361','Maze Runner: The Death Cure',9,'And yet as the final act succumbed
to dull, apocalyptic formula, I saw an entire sub-genre slip away with it: The Death Cure is a
grim, half-hearted farewell to this wave of young-adult dystopias.'),
('9982907981088662','Maze Runner: The Death Cure',8,'Everything else in The Death Cure
moves along assuredly and relentlessly, but like so many final installments of series, it has a
hard time letting go.'),
('5723962851066688','Maze Runner: The Death Cure',6,'The Death Cure serves as a
dissatisfying ending to an only passably serviceable franchise.'),
('7865462856766321','Maze Runner: The Death Cure',7,'Better than expected is the best
thing that can be said about this movie. '),
('7755462662366001','Maze Runner: The Death Cure',7,'The Death Cure is a grim,
half-hearted farewell to this wave of young-adult dystopias.'),
('8874672851857461','Jumanji: Welcome to the Jungle',8,"This crowd-pleasing reboot may
not be earth-shatteringly good, but it benefits from its stars' irresistible comedic and action
charm."),
('86744628644563241','Jumanji: Welcome to the Jungle',7,'A consistently inventive and
chucklesome reinvention of the Jumanji concept. Okay, so it coasts on the charm of its lead
quartet, but when there’s this much charm, that’s no bad thing.'),
('8563462851068567','Jumanji: Welcome to the Jungle',9,"Welcome to the Jungle is an
entertaining - if shallow - return to the world of Jumanji that's intended more for youngsters
than nostalgic adults."),
('7755462662366001','Beauty and the Beast',9,"Watson is an ideal Belle in this wonderful
remake that's at once nostalgic and new, bringing to life the musical both for kids and
life-long adult fans."),
('8587462776065566','Beauty and the Beast',9,"A touching, eminently watchable, at times
slightly awkward experience that justifies its existence yet never totally convinces you it's a
movie the world was waiting for."),
('6556462822226333','Beauty and the Beast',5,"As a whole, the production doesn't hold a
candelabrum to Kenneth Branagh's lovely 2015 version of Cinderella, to say nothing of the
1991 Beauty original."),
('5723962851066688','Beauty and the Beast',8,"From the poor provincial town to the
dazzling ballroom, the movie is a larger-than-life feast for the eyes. Emma Watson is Belle is
smart, progressive and not a princess.");

12

Administrator Side:

1. Add a new complex (A complex cannot exist without a theatre)

INSERT INTO theatre VALUES ('$complex_name', '$street', '$city',

'$pc', $phone_num, $theatre_num, $max_seats, '$screen_size');

Output:

2. Add a new theatre (A theatre cannot exist without a complex)

INSERT INTO theatre VALUES ('$complex_name', '$street', '$city',

'$pc', $phone_num, $theatre_num, $max_seats, '$screen_size');

Output:

3. Add a new movie

INSERT INTO movie VALUES ('$title', $run_time, '$pg_rating',
'$plot_synopis', '$production_company', '$supplier', '$start_date',
'$end_date', '$director_fname', '$director_lname', '$Cover_img');

Output:

4. Add a new showing

INSERT INTO showing VALUES('$movie_title', '$start_time',
'$end_time', $theatre_num, $num_seats, '$complex_name');

13

Output:

5. Find the most popular complex

SELECT
 complex_name
FROM
 (SELECT complex_name,

 SUM(tickets_reserved) AS A1
 FROM going_to
 GROUP BY complex_name
) AS T
WHERE A1 IN
(SELECT MAX(A1) AS A2
FROM
 (SELECT
 complex_name,
 SUM(tickets_reserved) AS A1
 FROM going_to
 GROUP BY complex_name
) AS T);

Output:

6. Calculate the number of movie sold in the most popular complex

SELECT MAX(A1) AS A2

FROM

 (SELECT complex_name, SUM(tickets_reserved) AS A1

 FROM going_to

 GROUP BY complex_name

) as T;

Output:

14

Complete output of 5 and 6 that will shown on our admin main page:

7. Find the most popular movie

SELECT movie_title

FROM

 (SELECT movie_title, SUM(tickets_reserved) AS A1

 FROM going_to

 GROUP BY movie_title

) AS T

where A1 IN

(SELECT MAX(A1) AS A2

 FROM

 (SELECT movie_title, SUM(tickets_reserved) AS A1

 FROM going_to

 GROUP BY movie_title

) as T);

Output:

8. Find the number of tickets sold of the most popular movie

SELECT MAX(A1) AS A2

FROM

 (SELECT movie_title, SUM(tickets_reserved) AS A1

 FROM going_to

 GROUP BY movie_title

) as T;

Output:

15

Complete output of 7 and 8 that will shown on our admin main page:

9. Update complex information

UPDATE theatre SET street = '$street', city = '$city', pc = '$pc',

phone_num = '$phone_num' WHERE complex_name = '$complex_name';

Output:

10. Update theatre information

UPDATE theatre SET max_seats = $max_seats, screen_size =

'$screen_size' WHERE complex_name = '$complex_name' and theatre_num

= $theatre_num;

Output:

11. Search members
(1) Search member by account number:

SELECT first_name, last_name, email FROM customer WHERE

account_number ='".$_POST['account']."';

Output (when we search account number = 8874672851857461):

16

(2) Search member by first and last name:

SELECT account_number, email FROM customer WHERE first_name =

'".$_POST['firstname']."' AND last_name = '".$_POST['lastname']."';

Output (when we enter “Robin” in first name field and “Goodwin” in the last
name field):

(3) List all members. When all three search boxes (first name, last name and
account number) are empty, all members will be shown:

SELECT first_name, last_name, account_number, email FROM customer;

Output（Part of all results):

17

12. Display customer’s information:

SELECT first_name, last_name, street, city, pc, phone_number, email

FROM customer WHERE account_number = ".$account_number.";

Output:

13. Display the viewing history of a customer:

SELECT movie_title, start_time, theatre_num, complex_name,

tickets_reserved FROM going_to WHERE customer_account =

".$account_number.";

Output:

14. Delete a customer from the database (Delete in 3 seperate queries):

DELETE FROM `going_to` WHERE `customer_account` =

'".$_POST['account']."';

DELETE FROM rates WHERE `customer_account` =

'".$_POST['account']."';

DELETE FROM customer WHERE `account_number` =

'".$_POST['account']."';

Output:
(1) A pop up message appears for confirmation of deleting the selected member
information

18

(2) After pressing “OK”, it will shown the deleted member is not in the database
anymore:

User (Customer) Side:

15. Search for movie/keyword in the header bar

SELECT title, run_time, plot_synopsis, Cover_img FROM Movie WHERE

(title LIKE '%".$movie_title."%') OR (plot_synopsis LIKE

'%".$movie_title."%');

Output: The movie you search shows up

16. Update customer’s information

UPDATE customer SET first_name = '".$fname."', last_name =

'".$lname."', street = '".$street."', city = '".$city."', pc =

'".$pc."', phone_number = '".$phone_number."', credit_card =

'".$ccard."', card_expiry = '".$card_expiry."', email = '".$email."'

WHERE account_number = '".$account_number."';

Output: None, customer’s information will be updated in the database.

19

17. Auto fill in customer’s information from the database

SELECT first_name, last_name, street, city, pc, phone_number, email,

credit_card, card_expiry FROM customer WHERE account_number =

".$_SESSION['account_number'].";

Output: Information is auto-filled in the input fields

18. In the user login page, select all the attributes from the account (email) the
user enters.

SELECT * FROM Customer WHERE email='$email';

19. In the admin login page, select all the attributes from the account(email) the
user enters.

SELECT * FROM Admin WHERE email='$email';

20. Register new user account

INSERT into customer VALUES ('$account_number', '$password',

'$first_name', '$last_name', '$street', '$city', '$pc',

'$phone_number', '$email', '$credit_card', '$card_expiry');

20

Output: New account information is inserted into the database and a pop-up
message appears.

21. Insert customer’s review and star ratings into the database

INSERT INTO `rates` VALUES ('$account_number', '$movie_title',

$star_rating, '$review');

22. Select the average star rating of a movie on the movie information page

SELECT AVG(star_rating) FROM rates WHERE movie_title =

'".$movie_title."' GROUP BY movie_title;

23. Show the reviews of a movie on the review page

SELECT first_name, city, star_rating, review FROM rates JOIN

customer ON customer_account = account_number WHERE movie_title =

'".$movie_title."';

Output:

21

24. Auto-fill in the fields (not including the expiration date) in the ticket order
page
SELECT first_name, last_name, credit_card FROM customer WHERE

account_number = ".$_SESSION['account_number'].";

Output:

25. Select the movie title and number of seats left

SELECT movie_title, num_seats FROM showing WHERE start_time =

'".$start_time."' and theatre_num = ".$theatre_num." and

complex_name = '".$complex_name."';

26. Update the number of seat left after a customer purchases tickets

UPDATE showing SET num_seats = num_seats - ".$numTickets." where

start_time = '".$start_time."'' and theatre_num = '".$theatre_num."'

and complex_name ='".$complex_name."'

27. Insert customer’s ticket information into going_to table

INSERT INTO `going_to` VALUES ('$account_number', '$movie_title',

'$start_time', $theatre_num, '$complex_name', $numTickets);

22

Output:

28. Select attributes of a movie from rates and movie tables

SELECT AVG(star_rating), run_time, pg_rating, plot_synopsis,

production_company, start_date, end_date, director_fname,

director_lname, cover_img FROM rates RIGHT JOIN movie ON movie_title

= title WHERE title = '".$movie_title."' GROUP BY movie_title;

29. Select actor’s first name and last name

SELECT actor_fname, actor_lname FROM acts_in WHERE movie_title =

'".$movie_title."';

Output: (27, 28 combined)

30. Display the showing information of a movie

SELECT start_time, complex_name, num_seats, city, theatre_num FROM

showing NATURAL JOIN theatre WHERE movie_title = '".$movie_title."';

23

Output:

31. SELECT title, run_time, Cover_img FROM Movie

SELECT title, run_time, Cover_img FROM Movie;

Output: Movies are shown on the page home page.

32. Delete reservation

DELETE FROM `going_to` WHERE start_time = '".$start_time."' AND

theatre_num = '".$theatre_num."' AND customer_account =

'".$account_number."';

Output: Reservation is removed

33. Show profile information

SELECT first_name, last_name, street, city, pc, phone_number, email,

credit_card FROM customer WHERE account_number =

".$_SESSION['account_number'].";

24

Output:

34. Show reservation on the profile page

SELECT movie_title, start_time, theatre_num, complex_name,

tickets_reserved FROM going_to WHERE customer_account =

".$_SESSION['account_number'].";

Output:

25

Problems Encountered During Development
Writing the queries and implementing this project’s visual was an educational

process. One of the initial problems we encountered during the development phase was
trying to connect to the database. Upon some research we figured out that the reason we
could not connect was because the mysql_connect() extension has been deprecated, we are
utilizing PHP 7, and to run database queries in PHP 7, we should use MySQLi.
Ex. $mysqli = new mysqli($host,$user,$pass,$db) or die($mysqli->error);

We also found it repetitive to keep writing the full database connection in each of our
scripts. A solution we found to this is to create the connection in one file (Figure 1), and
require this file in the beginning of all php scripts that needs database reading/writing (Figure
2).

Figure 1. Making connection to database

Figure 2. Require the connection

Another problem we encountered was determining how to remember and verify

whether a user was logged in while they moved from one page to another. This is important
because a user who is logged in should be able to view their account information as well as
purchase tickets and create reviews, but non-logged-in members should not have access to
this functionality. We originally started with two pages, one as the logged-in view and one as
the logged-out view. We soon realized that the problem with this implementation is that it is
very insecure. A user can access the logged-in view if they had knowledge of our logged-in
PHP file name. We switched to using a PHP session variable which stores information

26

across multiple pages until the user exits the application. At the start of all pages we used:
session_start() which loaded the session variables previously set on other pages. We
created a session variable: $_SESSION[‘logged_in’] which would be set to true if the user
logged-in successfully and false otherwise. When the logged_in variable is set to true, we
grant the user access to certain pages. We checked this through an if statement at the top of
our pages.

We also encountered problems with the SQL statements we wrote in our PHP files.
There were some pages which did not give any errors, but no data was loaded from the
database. We solved this by testing our queries on phpMyAdmin and printing the variables
that we were inserting into the SQL queries on our webpage to ensure we were inserting the
correct data.

Lastly, we found the hardest part of the project to be CSS debugging and browser
compatibility. Sometimes, changes to our CSS file did not take effect in our browser or would
work differently on separate pages. In some cases, it is because the CSS layout is already
stored in cache and pre-processed by the browser. A resolution to this was to clear our
browser’s cache so that new CSS changes would show. Since we had multiple CSS files,
we also ensured that the CSS links in our PHP files were ordered from lowest to highest
priority. We also made sure to test our pages on different browsers such as Chrome, Safari,
and IE to ensure our CSS would be compatible for most users.

Important design and implementation decisions
We continuously made small changes to improve our design. Some important design

and implementation decisions include allowing users to only update theatre information for
theatres that exists in the database. For example, a user cannot pick theatre number 5 for
Alliance because it only contains 4 theatres or a user cannot pick theatre number 6 for
Cineplex as it only has 5 theatres (Figure 3). This design structure populates the list of
allowed response from users in the form of radio buttons and ensures the correctness of
entry to our database. It also alleviate the need for an admin to go back and search through
each complex to see how many theatres there are. This is a good implementation practice
as it saves time for the user and protects from loss of integrity of data.

Figure 3. Updating theatre information

27

Another important design decision is the format of expiry date of credit card on the
registration page. It auto divides the data and parses it into DD/MM/YY format when our
PHP script grabs the POST data. This is very useful for our implementation, as it resolves
problems such as month and date confusion with other formats of date entry (Eg.
2018-01-20, 01/20/2018). This ensures the integrity of the data by asking users to enter date
in a specific predefined form that we can measure.

Since we want to minimize the amount of people who have access to the Admin
page, we did not create an admin registration page. We believe that too much control from
different sources can be messy. Having a list of admin accounts pre-created with usernames
and passwords given to the user would be a better practice for users with elevated privileges
to manage the system. This protects the confidentiality of the data because admin accounts
have access to member information which regular users should not be able to see.

The last important design and implementation decision is letting our edit profile page
auto fill the elements of all member information into the text label. This makes the flow of the
website very natural and intuitive, so the users don’t need to think what to do next when they
want to edit or add to their profile information.

Tools Used in Development
The front end of our project consists of HTML, CSS, Bootstrap and Javascript. We

started with simple HTML pages that contained the core content of the page. After all the
core content was written out, we used Bootstrap as our UI framework base to deliver good
layout display and match the need of current browser trends. CSS was then used on top of
Bootstrap when we wanted to modify, remove, or add to the elements and styles from
Bootstrap that we didn’t like. CSS was used to separate style from structure and content.

We learned during the development of the project that having a framework like
Bootstrap is very useful. Although there was a bit of a learning curve at the beginning, we felt
that by the end of the project, not only did Bootstrap help us create consistent, minimalistic
design layouts, it also saved us the effort and time of writing out the pages completely from
scratch.

We hosted our PHP scripts through XAMPP - a free, easy to install apache
distribution containing MySQL, PHP and Perl, and used mySQL and PHP to query
statements from our database. PHP is a server-side scripting language designed for web
development, but can also be used as general purpose programming language. We enjoyed
having XAMPP on our computers because it was simple to add our files to the htdocs folder
and be able to run our PHP code on our computer like a server. phpMyAdmin was helpful in
checking our queries to ensure they were written correctly, and returned our desired results
before adding them to our PHP documents. We learned that testing our SQL queries on
phpMyAdmin first was a lot faster than trying to figure out the errors after running our
application.

On some of our pages, we used JavaScript to create more dynamic, user friendly
content. For example, on our member profile page, initially only upcoming reservations will
be visible. We have already loaded all the information onto the page from our database
query, but have made the div with past reservations hidden. Using JavaScript enabled us to
have a button on our page which when clicked calls on a JavaScript function to make the div
visible. Another example is on the ticket purchase page; the total price is updated

28

dynamically as the user enters how many tickets they would like to buy. JavaScript also
allowed us to check that the entered value was a valid integer, and was less than the
number of seats left for the showing.

Since our group members have different operating systems, we utilized two different
IDE environments. Scripts on windows were written using Notepad++ and scripts on MAC
were written in ATOM. We choose these two editors because of their minimalist nature and
also because they can handles large amount of files very well. They are both free editors
that supports several programming languages.

Our project is maintained through Github. We choose to use Github because it is a
great way for us to collaborate and see each other’s code. This way, we could ensure that all
of our code worked well together and revision on one part did not cause unwanted results on
another part. Github allowed us to handle and maintain code with the ability to undo any
unwanted actions. It helped us maintain best code practices as well as showcase our recent
work through our online profile.

Lessons Learned and Enhancements
During this project, our group felt we worked very well together. As a group we

decided to start working on the project early. However, by getting an early start, the first time
we met to collaborate on the web design, we were a bit scattered on where to start.

Individually, when writing our SQL statements, we should have created the query
statements before developing each webpage instead of trying to call the database with
incorrect statements that did not show up in our UI. Had we created these query statements
earlier though phpMyAdmin, we would have spent less time figuring out our errors in our
PHP scripts.

If we were to change anything, we would have liked to have more facts displayed on
our admin home page, as well as more security for passwords. The admin homepage
currently only has two facts - the most popular complex with the amount of tickets sold in
that complex, and the most popular movie with the amount of tickets sold for that movie.
Given more time, we would have liked to create better visual representation of the data with
more insight. Eg. Histogram chart that displays the amount of tickets sold for each complex,
the age and gender group for each movie, the top movies from each complex and more.

The password is currently stored directly in the database as plain-text. We
understand that in the real world, the most important aspect of a user account system is the
confidentiality of user data. User account databases are hacked frequently, so with more
time, we would like to protect our user passwords by employing salted password hashing
(with phpass) if our website is ever breached. We protect confidentiality currently by only
allowing administrators to view member data (not including credit card data), but we would
like to add PHP functions which better sanitize and validate form field data to prevent SQL
injection.

As future developers working on a large scale project, we learned from this project
that documentation in code is very important. The documentation and comments for each
script should be clear from the beginning of the development. This will ensure that when
other team members work on the code, there won’t be any miscommunication. Having good
documentation also makes our code easy to maintain. As we worked on this project over

29

several weeks, our comments helped us to remember what our code was doing and
improved readability.

Overall it was a very fun experience to develop the Movie ticket website, and it gave
us insight on how to develop, design, retrieve data across the database and design a
platform to showcase it.

30

